If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2-14=0
a = 1; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·1·(-14)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{14}}{2*1}=\frac{0-2\sqrt{14}}{2} =-\frac{2\sqrt{14}}{2} =-\sqrt{14} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{14}}{2*1}=\frac{0+2\sqrt{14}}{2} =\frac{2\sqrt{14}}{2} =\sqrt{14} $
| w^2=14w | | 2^x^2=3x | | 5a^2+8a-60=0 | | 2(5x+3)=4x-18 | | 3c/c=63 | | |2x-17|=-4 | | 7w=5w+9 | | 3x^2+0+8=0 | | z2+2z+4=0 | | z3+2z+4=0 | | x+(0.101787x/0.01885)-(25)=0 | | 4x^2-2=-7x | | ?x54=9 | | 10p+24=56 | | -16^x2+16x+5=0 | | 2.5=2x | | 48=9b-b | | -1/8m=3/4 | | -1/4m=3/4 | | 2x+4x+-2=20 | | 9(x-1)+(x-4)=16 | | 9X(x-1)+(x-4)=16 | | s+65.35-37.50=127.75 | | 1.5(b+2)=b(2b-9) | | 5/x=30/40 | | Z^2+16z+51=0 | | 6=2w+3÷5 | | (7+v)(4v+9)=0 | | x=0.8x-2 | | x-2+0,66=0 | | -2/9u=-8 | | 5u+8=-12 |